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An evaluation of aerodynamic forces and moments that act on an irregularly 
shaped body (fragments of HE projectile) moving at high velocities was 
made, using numerical simulations, analytical models, and CAD methods. 
Using the results obtained for aerodynamic forces and moments, and known 
values of body exposed area, aerodynamic drag and lift coefficients were 
determined for different body orientations and different flow velocity. 
Analysis of the influence of the body front surface and body slenderness on 
the position of the maximum CD value (on the CD (Ma) curve) was performed. 
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1. Introduction  

*Aerodynamics studies the laws of air movement 
and its interaction with solid bodies in it. 
Aerodynamics is closely related to fluid mechanics, 
thermodynamics, and gas dynamics. 

External aerodynamics deals with the prediction 
of force, moment and heat transfer to bodies that 
move through the air. It studies the generation of 
force and moment on various aero profiles, wings, 
aircraft configurations and other bodies moving 
through the air (Anderson, 2016). 

Irregularly shaped high-speed bodies (such as HE 
projectile fragments) are characterized by high 
velocities, viscous and compressible flow, dominant 
resistance due to pressure, shock waves in front, 
laterally and behind the body, predominantly 
turbulent flow due to high velocities, unsteady flow 
fields of velocities and pressures, and most often by 
separating the boundary layer from the surface of 
the body during its movement through the air 
(Buresti, 2000). 

The flow in which the density of the fluid is 
constant is incompressible. All flows are more or less 
compressible, since completely incompressible flows 
do not exist in nature. Flows in which the Mach 
number is less than 0.3 are considered 
incompressible (Anderson, 2016) and there are 
several fluid flow modes using this criterion [1]: 
subsonic flow (M <1 throughout the flow), transonic 
flow (mixed regions where M <1 and M> 1), the 
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supersonic flow (M> 1 in the entire flow) and the 
hypersonic flow (high supersonic velocities, M> 5). 

2. Aerodynamic forces, moments and coefficients 

Aerodynamic forces and moments arise as a 
result of pressure distribution and tangential stress 
on the surface of the body moving through the 
atmosphere. The pressure (p) acts normally on the 
surface of the body, while the tangential stress () 
acts perpendicular to the surface of the body. The 
tangential stress is caused by friction between the 
body and the air that flows around it. The main goal 
of aerodynamics is to determine p and  for given 
body shape and free flow conditions, and with the 
help of obtained values - determine aerodynamic 
forces and moments (Anderson, 2016). 

The total effect of the pressure and tangential 
stress, integrated across the entire surface of the 
body, is the total aerodynamic force FR and total 
aerodynamic moment MR. The resulting force FR acts 
in the so-called center of pressure cp. In general case, 
the body center of mass cm is not located in the 
center of pressure cp. The resulting force MR acts in 
the body center of mass and causes its instability 
during movement.  

The total aerodynamic force FR that acts on the 
body equals the sum of all elemental forces on the 
total surface of the body. Using the dimensional 
analysis, the aerodynamic force FR can be presented 
in the general form as a function of the following 
variables (Anderson, 2016): 

 
𝐹𝑅 = 𝑓(𝜌, 𝑣, 𝑙, 𝜇, 𝑎),                     (1) 
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where ρ is the free flow density, v is the free flow 
velocity, l is the reference length, μ is the viscosity 
coefficient, and a is the free-flow sound velocity. 

After applying dimensional analysis to expression 
1, it can be written as (Anderson, 2016): 

 

𝑓 (
𝐹𝑅

0,5𝜌𝑣2𝑆
,
𝜌𝑣𝑙

𝜇
,
𝑣

𝑎
) = 0                    (2) 

 
where S is the body reference area. The reference 
area of the body S and the reference length of the 
body l are chosen arbitrarily. For different body 
forms, S and I can be different things. For an 
axisymmetric body (e.g., spheres) S is the cross-
sectional area, and l-diameter (Anderson, 2016). 

In expression 2 there are non-dimensional 
coefficients that are important in aerodynamics 
(Anderson, 2016): 

 

Reynolds number: 𝑅𝑒 =
𝜌𝑣𝑙

𝜇
                    (3) 

Mach number: 𝑀 =
𝑣

𝑎
                    (4) 

 
If the first part of the expression 2 is written in 

the form 𝐶𝐹𝑅
= 𝐹𝑅/0,5𝜌𝑣2𝑆, where 𝐶𝐹𝑅

 is the non-

dimensional coefficient of the total aerodynamic 
force FR, then it follows that (Anderson, 2016): 

 
𝐶𝐹𝑅

= 𝑓(𝑅𝑒,𝑀)                     (5) 

 
This means that the coefficient of total 

aerodynamic force 𝐶𝐹𝑅
 is only a function of Reynold 

and Mach numbers. Thus, expression 2 is reduced 
from five to two dependent variables, Re and M. 

In addition to aerodynamic forces and moments, 
in aerodynamics dimensionless aerodynamic 
coefficients are very important. Aerodynamic 
coefficients are used to determine the aerodynamic 
characteristics of a body (i.e., aircraft, projectile, 
wing). They bring all bodies into the same arena by 
having a ratio of forces rather than simply using the 
forces. So a large body might have more lift than a 
small body but have a smaller lift coefficient. Using 
the aerodynamic coefficients, efficiencies can quickly 
be compared. 

If ρ and v define the density and free-flow 
velocity, the expression for the dynamic pressure q 
in the free flow becomes (Anderson, 2016): 

 

𝑞 =
1

2
𝜌𝑣2                     (6) 

 
Since the parameters S and l are defined as the 

reference area and the reference body length, the 
dimensional coefficients of the force (Fi) and the 
moment (Mi) can finally be expressed in the 
following way (Anderson, 2016): 

 

Force coefficient:  𝐶𝐹 =
𝐹𝑖

𝑞𝑆
                    (7) 

Mach number:       𝐶𝑀 =
𝑀𝑖

𝑞𝑆𝑙
                    (8) 

 
Although aerodynamic coefficients are significant 

for estimating the body trajectory, there is very little 

available data on their values for irregularly shaped 
bodies. A review of the literature in this field showed 
that very few researchers were engaged in more 
serious research in order to estimate these 
coefficients taking into account the stochastic shape 
of the body, its velocity and its real exposed area. 

In general, there are very few publicly available 
data on the values of the drag coefficient CD. 
Investigation of the drag coefficient during the flight 
of irregularly shaped bodies through the atmosphere 
is a very complex, and experimental tests used are 
expensive. 

In most studies (Dunn and Porter, 1955; Ramsey 
et al., 1978; AASTP, 2006; Moga and Kisielewski, 
1979; McDonald, 1980; McCleskey, 1988; Miller, 
1990; Haverdings, 1994) where experimental tests 
were performed to determine the value of the drag 
coefficient CD values for projectile fragments, the aim 
was to determine the value of CD in the subsonic 
regime because the value CD in that zone is critical to 
determining the total range of fragments to 
determine the real zone of danger after a possible 
explosion of military warehouses or accidents in 
open-air ammunition stockpiles. 

A large number of researchers in their papers 
indicate that the drag coefficient for fragments can 
be taken as a constant (Crull, 1998; Zehrt Jr and 
Crull, 1998; Crull and Swisdak, 2003), arguing that 
the fragments in the initial phase of their trajectory 
move at speeds up to several times higher than the 
local sound velocity (CD(Ma) curves usually changes 
very little in supersonic motion regime) However, 
the drag coefficient CD variation may have a 
significant effect on body movement, and this fact is 
rarely emphasized in the literature. 

Analysis of the literature dealing with drag 
coefficient did not find any research involving 
numerical simulations of airflow around real 
fragments (produced by the detonation of HE 
projectiles), where the phenomenology of the 
movement of the actual fragment in the atmosphere 
and its aerodynamic parameters would be studied 
more seriously. 

No experimental data on aerodynamic lift 
coefficients CL were found for irregularly shaped 
fragments in the available literature, but it is 
possible to find in the literature the data on the CL 
coefficient for some other forms (for example, data 
for a flat plate, parallelepipedic form) and draw 
certain conclusions. 

3. Numerical simulation method 

Methods of numerical simulations using CFD 
(Computational Fluid Dynamics) are an important 
aspect of modern research because they are 
complemented by experiments and analytical 
models, reducing total time and labor costs. 

In order to determine the values of the 
components of the aerodynamic force, torque and 
exposed area of the body, on the basis of which the 
aerodynamic coefficients are determined, the 
numerical simulations (for different velocities of the 
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three-dimensional, compressible, turbulent, steady 
flow around the irregularly shaped body) were 
performed in the Ansys Fluent CFD package for 
fragment in different orientations. 

3.1. Basic equations 

The basic equations of flow represent continuity 
equation, momentum equation and energy equation.  

Physical principle behind continuity equation is 
that mass can be neither created nor destroyed. 
Continuity equation can be written in the form of a 
partial differential equation (Anderson, 2016): 

 
𝜕𝜌

𝜕𝑡
+ ∇(𝜌𝑉) = 0                     (9) 

 
This equation relates the flow field variables at a 

point in the flow. Equation (9) hold in general for the 
three-dimensional, unsteady flow of any type of 
fluid, inviscid or viscous, compressible or 
incompressible.  

Physical principle behind momentum equation is 
that force is equal to time rate of change of 
momentum and can be written in differential form as 
(Anderson, 2016): 
 
𝜕(𝜌𝑢)

𝜕𝑡
+ ∇(𝜌𝑢𝑉) = −

𝜕𝑝

𝜕𝑥
+ 𝜌𝑓𝑥 + (𝐹𝑥)𝑣𝑖𝑠𝑐𝑜𝑢𝑠                (11) 

𝜕(𝜌𝑣)

𝜕𝑡
+ ∇(𝜌𝑣𝑉) = −

𝜕𝑝

𝜕𝑦
+ 𝜌𝑓𝑦 + (𝐹𝑦)𝑣𝑖𝑠𝑐𝑜𝑢𝑠                (12) 

𝜕(𝜌𝑤)

𝜕𝑡
+ ∇(𝜌𝑤𝑉) = −

𝜕𝑝

𝜕𝑧
+ 𝜌𝑓𝑧 + (𝐹𝑧)𝑣𝑖𝑠𝑐𝑜𝑢𝑠                (13) 

 

The momentum equations for a viscous flow 
[Equations 11 to 13] are called the Navier-Stokes 
equations. For an incompressible flow, where ρ is 
constant, the primary flow-field variables are p and 
V. The continuity and momentum equations 
obtained earlier are two equations in terms of the 
two unknowns p and V. Hence, for a study of 
incompressible flow, the continuity and momentum 
equations are sufficient tools to do the job. However, 
for a compressible flow, ρ is an additional variable, 
and therefore we need an additional fundamental 
equation to complete the system. This fundamental 
relation is the energy equation (Anderson, 2016). 

Physical principle behind energy equation is that 
energy can be neither created nor destroyed; it can 
only change in form. This physical principle is 
embodied in the first law of thermodynamics. It can 
be written as (Anderson, 2016): 

 
𝜕

𝜕𝑡
[𝜌 (𝑒 +

𝑣2

2
)] + ∇ [𝜌 (𝑒 +

𝑣2

2
) 𝑉] = 𝜌𝑞̇ − ∇ ∙ (𝑝𝑉) +

𝜌(𝑓 ∙ 𝑉) + 𝑄̇𝑣𝑖𝑠𝑐𝑜𝑢𝑠
′ + 𝑊̇𝑣𝑖𝑠𝑐𝑜𝑢𝑠

′                  (14) 

 

where 𝑄̇𝑣𝑖𝑠𝑐𝑜𝑢𝑠
′  and 𝑊̇𝑣𝑖𝑠𝑐𝑜𝑢𝑠

′  represent the proper 
forms of the viscous terms. 

With the energy equation, we have introduced 
another unknown flow-field variable e. We now have 
three equations, continuity, momentum, and energy, 
which involve four dependent variables, ρ, p, V, and 
e. A fourth equation can be obtained from a 
thermodynamic state relation for e. If the gas is 
calorically perfect, then (Anderson, 2016): 

𝑒 = 𝑐𝜗𝑇                    (15) 

 
where cϑ is the specific heat at constant volume. 
Equation (15) introduces temperature as yet another 
dependent variable. However, the system can be 
completed by using the perfect gas equation of state 
(Anderson, 2016): 

 
𝑝 = 𝜌𝑅𝑇                    (16) 

 
where R is the specific gas constant. Therefore, the 
continuity, momentum, and energy equations, along 
with Equations (15) and (16) are five independent 
equations for the five unknowns, ρ, p, V, e, and T . 

3.2. Numerical simulations procedure 

The method of numerical simulations of air flow 
around an irregularly shaped body (fragment) 
consisted of: 
 
a) Digitalization of the fragment model 
b) Physical domain discretization 
c) Characterization of materials 
d) Initial and boundary conditions 
e) Solver and turbulence model selection 
f) Aerodynamic force, moment and exposed area od 
fragment estimation (UDF Script) 

3.2.1. Digitalization of the fragment model 

The irregularly shaped body with which the 
numerical simulations were performed for different 
orientations is presented in Fig. 1.  

Since the 3D scanner was not available, a body 
was digitized using CAD software. The three 
dimensional model of the body (Fig. 2) was made 
using CAD methods, modeling a real body in three 
projections, and then manipulating it: extruding in 
the direction of three coordinate axes, connecting 
extruded projections and determining their cross 
section as the final 3D model. This 3D model was 
later imported in Ansys Fluent. 

3.2.2. Physical domain discretization 

Since these type of bodies have a stochastic and 
irregular shape, it would be very difficult to define 
their geometry using only point by point technique 
in one of the older preprocessors such as, for 
example, Gambit. 

For this reason, Ansys Fluid Flow Design Modeler 
was used, which enables the introduction of already 
finished CAD models into Ansys Fluent software. 

The mesh of the numeric model was unstructured 
(Fig. 3), consisting of around 626 000 polyhedral 
elements. The mesh was especially fine around the 
body where high gradients are expected (Fig. 5) to 
reduce the numerical error. 
The Ansys Fluent coordinate system was placed in 
the body center of mass, with the initial orientation 
of the body adopted to coincide with the principal 
axes of inertia. 
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Fig. 1: Photograph of body with irregular shape (fragment) 

 

 
Fig. 2: Digitized model of body with irregular shape 

 

 
Fig. 3: A larger view of the mesh around the body in model 

3.2.3. Characterization of the resistive medium 

Air is modeled as homogeneous, isotropic, ideal 
gas with pressure-temperature dependent density , 
specific heat Cp, thermal conductivity k and dynamic 
viscosity . 

During the high-velocity motion of the fragment, 
the pressure nearby the fragment boundary can 
reach values multiple times higher than the 
atmospheric pressure which results in significant 
local change in density.  

Fluent used following form of ideal gas law for 
compressible flows (Fluent, 2010): 

 

𝜌 =
𝑝𝑎𝑡𝑚+𝑝

𝑅𝑇

𝑀

                   (15) 

  
where: patm – atmospheric pressure, p - relative 
pressure, R - universal gas constant, M - molar mass, 
T - temperature determined from the equation of 
energy. 

For material (ideal gas) following parameters 
were used: specific heat Cp = 1006.43 J/kgK, thermal 
conductivity k = 0.0242 W/mK, and the molar mass 
M = 28.966 kg/kmol. 

The influence of temperature T on the dynamic 
viscosity of air can be significant for large variations 
in temperature. It was determined by the Sutherland 
model (Fluent, 2010): 

 

𝜇 = 𝜇0 (
𝑇

𝑇0
)
3/2 𝑇0+𝑆

𝑇+𝑆
                   (16) 

 
where 0 - dynamic viscosity, T0 - reference 
temperature, S - Sutherland constant. For air 
following values were used: 0 = 1,71610-5 kg/ms, 
T0 = 273,11 K, and S = 110,56 K (Fluent, 2010).  

3.2.4. Initial and boundary conditions 

In the simulations, fragment was considered 
stationary and airflow around it was analysed. 
Numerical simulations for 24 fragment orientations 
were performed for angles 0- 360 with 15 angle 
increments. Fig. 4 shows the schematic position of 
the fragment in numerical simulations. The velocity 
vector was directed in the positive direction of axis X 
of the coordinate system set in the body center of 
mass (Fig. 4).  

For all body orientations (Fig. 4), simulations of 
flow over the the body for 9 different velocities (0.6, 
0.8, 1, 1.2, 1.3, 1.5, 2, 3 and 4 Mach) were carried out. 

Since the flow velocity around the body is always 
supersonic at the beginning of its flight, significant 
effects of compressibility and viscosity, as well as 
shock waves occur. 

For the compressible and isentropic (reversible 
adiabatic thermodynamic process) flow of the ideal 
gas, expressions from the compressible fluid 
mechanics (Fluent, 2010) are used: 

 

𝑝0

𝑝
= (1 +

𝛾−1

2
𝑀2 )

𝛾

𝛾−1
                  (17) 

𝑇0

𝑇
= 1 +

𝛾−1

2
𝑀2                    (18) 

 
where: p0 – isentropic (stagnation) pressure, p - 

static pressure, T0 - isentropic (stagnation) 
temperature, T - static temperature,  - adiabatic 
exponent (ratio of specific heats). The value of  for 
the air is 1.4. 

At the end of the domain, Pressure Farfield 
condition was used, which is commonly used in 
Fluent in aerodynamic simulations, where the effect 
of compressibility is dominant. 
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Fig. 4: Schematic position of the body (fragment) in numerical simulations 

 

The No Slip condition is defined on the surface of 
the body, which means that the relative flow velocity 
on the surface of the body is equal to zero. 

Boundary condition - the wall is used in case 
when the viscous effects cannot be ignored and is 
relevant to most fluid flow situations (Fluent, 2010). 

3.2.5. Solver and turbulence model selection 

Solver settings include solver type selection, 
discretization scheme, solution initialization, and 
convergence monitoring. There are two basic types 
of solver in Fluent (Fluent, 2010): pressure based 
and density-based solver. According to the 
recommendation (Fluent, 2010) for use with 
compressible flows, a density-based solver was 
selected in the simulations, where mass, flow and 
energy equations are determined as the Navier-
Stokes equation system in integral form for an 
arbitrary control volume. 

Using the Navier-Stokes equation [equations 11-
13] in the density-based solver in certain cases 
(when there is a large difference between the 
velocity of the flow and the local sound velocity) 
results in lower convergence, and in this case the 
preconditioning technique (Fluent, 2010) is used.  

By determining the Reynolds number for the air 
flow around the body (kinematic viscosity of air is 
1,5110-5 m2/s for density of 1,2 kg/m3) for the 
velocity of the flow above 0,6 Mach, the Re number 
exceeds 105 , which means that the flows around the 
fragment with these velocities are turbulent, 

although the time of movement of this body through 
the atmosphere is relatively short. 

According to the recommendations (Fluent, 
2010), the Spalart-Allmaras turbulence model was 
used in the simulations. This is a relatively new 
physical model of turbulence. It has been developed 
specifically for aerodynamic applications (especially 
in the aerospace industry) and has proven to be 
effective for the boundary layers with high pressure 
gradients, and has been particularly effective for 
transonic flows around the aero profiles, including 
flows with significant separation of the boundary 
layer (Pope, 2000). 

3.2.6. Aerodynamic moment estimation (UDF 
Script) 

A program (in C programming language) was 
written that determines the aerodynamic forces, 
moments and exposed areas for fragment 
(perpendicular to airflow velocity vector) for all 
three coordinate axes. For each cell on the body, the 
forces are determined in three directions, as follows 
(Kljuno and Catovic, 2017a): 

 
𝐹𝑥 𝑖 = 𝑝 𝑆𝑥 𝑖 , 𝐹𝑦 𝑖 = 𝑝 𝑆𝑦 𝑖 , 𝐹𝑧 𝑖 = 𝑝 𝑆𝑧 𝑖 ,                (19) 

 
where: Fxi, Fyi i Fzi- force components for each body 
cell, ps - pressure on the surface of the wall, and Sxi, 
Syi and Szi - the elementary exposed body surfaces 
vertical to the respective coordinate axes. 



Alan Catovic, Elvedin Kljuno /International Journal of Advanced and Applied Sciences, 5(7) 2018, Pages: 71-85 

76 
 

Then the components of the total pressure force 
Fx, Fy and Fz are determined as (Kljuno and Catovic, 
2017b): 

 
𝐹𝑥 = ∑ 𝐹𝑥 𝑖

𝑛
𝑖=1 ,  𝐹𝑦 = ∑ 𝐹𝑦 𝑖

𝑛
𝑖=1 , 𝐹𝑧 = ∑ 𝐹𝑧 𝑖

𝑛
𝑖=1 .                (20) 

 
The aerodynamic moment is determined for each 

cell of the discrete model as the vector product of the 
cells vector radiuses and the aerodynamic force 
acting on that cell (Kljuno and Catovic, 2017c): 

 
𝑀⃗⃗ = ∑ 𝑟𝑖⃗⃗  𝑥 𝐹𝑖⃗⃗ 

𝑛
𝑖=1                    (21) 

 
The components of moment M for each cell of the 

body using the function NV_CROSS (ri, Fi) are 
determined by the program, and then total moment 
for all three axes is obtained by summing all 
elementary moments. 

The moment of the forces tangential to the 
surface ("friction forces") of each boundary cell is 
neglected with respect to the moment due to the 
dominant pressure forces. 

Exposed areas S of fragment, perpendicular to 
axes x, y and z are determined as (Kljuno and 
Catovic, 2017a): 

 
𝑆𝑥 = ∑ 𝑆𝑥𝑖

𝑛
𝑖=1  ,   𝑆𝑦 = ∑ 𝑆𝑦𝑖

𝑛
𝑖=1   ,  𝑆𝑧 = ∑ 𝑆𝑧𝑖

𝑛
𝑖=1                 (22) 

 
where Sxi, Syi i Szi are exposed areas of each 
individual cell of fragment, perpendicular to x, y and 
z axes, respectively. Exposed area of fragment is 
determined by summing all individual area of each 
cell using the function F_AREA in C program. 

Solver of Ansys Fluent is set by dynamically 
loading the developed UDF (user defined function) 
program and executing the commands entered into 
it. Aerodynamic forces and moments are determined 
using UDF script, specifically using the 
DEFINE_EXECUTE_AT_END commands (general type 
macro, executed in the simulation) for each cell of 
the model. 

The UDF program is written so that the results 
are printed as a table in a separate .txt document. 

A numerical model was validated using available 
experimental data for drag coefficient CD of the cube, 
determined using expression (Anderson, 2016): 

 

𝐶𝐷 =
𝐹𝐷

𝑞𝑆
,                    (23) 

 
where: FD is the drag force, S is the reference area 
and 𝑞 = 0,5 𝜌𝑣2 is dynamic pressure. 

The experimental data (Schamberger, 1971; 
Hoerner, 1965) of CD for cube flat-on flow (flow 
perpendicular to the cube side) were compared with 
values of CD obtained using numerical simulations. 

In the process of validation of results, the 
discretization of space and time, solver and initial 
and boundary conditions in the case of simulation of 
the airflow around 3D cube models were the same as 
in the numerical model of flow around the 3D model 
of the irregularly shaped body. 

Fig. 5 gives a comparison of numerical simulation 
results with experimental data (Schamberger, 1971; 
Hoerner, 1965) for flat-on orientation of cubes. The 
difference between values of the CD from simulations 
and experiments were less than 10%. 

4. Results 

4.1. Aerodynamic drag coefficient 

After the completion of numerical simulations of 
airflow around 3D model of the fragment, the data 
on the components of the aerodynamic forces (the 
force components in the x, y and z axes), the 
components of the aerodynamic moments 
(components of the moment in the x, y and z axes), 
and the exposed areas of the fragment were 
determined, for each Ma number considered, using 
the UDF program [equations 19-22]. 

 

 
Fig. 5: Comparison of CD from simulations and experiments (Schamberger, 1971, Hoerner, 1965) for cube 

 

Based on the obtained results on forces, moments 
and exposed areas, the values of aerodynamic drag 

coefficients for the fragment are determined for 
different values of Mach numbers using expressions: 
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Drag coefficient:  𝐶𝐷 =
𝐹𝐷

𝑞𝑆
                  (24) 

Lift coefficient:       𝐶𝐿 =
𝐹𝐿

𝑞𝑆
                  (25) 

 
The drag force FD from the expression (24) is in 

the direction of axis x; this axis is stationary in the 
simulations and is always in the direction of the 
velocity vector, Fig. 4). The lift force FL (expression 
25) is in the direction of axis y in simulations (Fig. 4), 
always perpendicular to the velocity vector. The 
exposed surface of the fragment S is the projection of 
the total surface of the fragment on a plane 
perpendicular to the velocity vector, i.e. the plane YZ 
in Fig. 4. Dynamic pressure of free flow q is 
determined by the expression mentioned in equation 
23. 

In Table 1, values of drag coefficient CD for a 3D 
model of an irregularly shaped body (fragment) 
were presented, obtained using numerical 
simulations and expression (24), for different body 
orientations (0-360) and different velocities (0.6 M 
to 4 M). Angular increments of fragment orientation 
of 15 were used in plane XY (Fig. 4). 

Fig. 6 shows the values of drag coefficient CD, 
obtained using numerical simulations (Table 1) for 
different orientations of fragment (0 °-360 °). 

Diagram in Fig. 6 shows that the maximum drag 
coefficient CD is  obtained in the case when fragment 
is in the initial position (orientation of 0° or 360°, 
Fig. 4), and minimum when the fragment is rotated 
90° relative to the initial position, i.e., when the 
fragment is in a position in which it represents 
relatively slender body, Fig. 4).  

At velocites greater than 1.5 Ma, the fragment has 
minimum value of the coefficient CD in orientation 
when it is rotated 105 relative to the initial 
configuration (the lower red curve in Fig. 6). Other 
CD values (CD (Ma) curves for other fragment 
orientations) are in specified interval between CDmax 
and CDmin. 

In Fig. 7 the results of the maximum and 
minimum value of drag coefficient CD are given, 
obtained using the simulations as the function of 
Mach number (CDmax - violet set of dotted points and 
CDmin - a green set of dotted points) together with the 
publicly available experimental data for the drag 
coefficient of fragments (Dunn and Porter, 1955; 
Ramsey et al., 1978; AASTP, 2006; Moga and 
Kisielewski, 1979; McDonald, 1980; McCleskey, 
1988; Miller, 1990; Haverdings, 1994). 

As far as experimental data is concerned, Fig. 7 
indicates certain deficiencies that have been 
observed. One of the disadvantages is that most of 
these tests contain very little data on the CD values in 
the supersonic regime. Another disadvantage is that 
no research has given details of how the exposed 
surface of fragments is determined which 
significantly affects the final CD values, as well as the 
data on dimensions and the mass of fragments. 
These experimental tests were conducted in the 
period from 1955 to 1995 and no data are available 
on whether more recent tests have been conducted 
with modern measuring equipment.  
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All these parameters play an essential role in 

determining the value of the coefficient CD, in 
particular the data on the assumed reference surface 
of the fragment. Some researchers (McDonald, 1980) 
state that the drag coefficient of in the subsonic and 
supersonic flow is assumed constant (i.e., red and 
blue curves representing the extreme values of CD in 
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the experimental data sets in Fig. 7), which in reality 
is not the case, and it is probably a certain 

approximation of the CD, due to the lack of data. 

 

 
Fig. 6: The range of values of the drag coefficient CD for the 3D model of the fragment obtained by the simulations 

 

 
Fig. 7: Comparation of max. and min. drag coefficients obtained with simulations and experimental drag coefficients 

(Dunn and Porter,1955; Ramsey et al., 1978; AASTP, 2006; Moga and Kisielewski, 1979; McDonald, 1980; McCleskey, 1988; 
Miller, 1990; Haverdings, 1994) 

 
Also, it has already been mentioned that no 

research has been conducted in which numerical 
simulations of airflow around the real 3D model of 
fragments have been found (mostly numerical 
simulations of flow around the symmetrical bodies 
are found in the literature) so the results of the 
simulations performed in this paper could not be 
compared to results of numerical simulations of 
other authors.    

If the simulation results are compared with the 
experimental data, the first thing that is noticed in 
Fig. 7 is that the minimum values of a CD obtained by 

numerical simulations are considerably smaller than 
the minimum values of a CD obtained experimentally. 
This difference may be the result of a different way 
of defining the exposed surface of the fragment 
(some authors state that the entire outer surface of 
the fragment can be taken as its reference surface), 
so it is important for each researcher to emphasize 
which reference surface of fragment was used in his 
research, so the results could be compared. 

The second concluson that can be deduced from 
the diagram in Fig. 7 is that the maximum CD values 
range from 1.2 to 1.5 in numerical simulations, while 
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in experimental data the maximum CD value is in the 
range of 1.2 (Haverdings, 1994) to 1.6 (McDonald, 
1980). 

The curve of the maximum value of CD, obtained 
with numerical simulations (dotted line of purple 
color, Fig. 7), is closest to the experimental data 
(data in central part of the diagram in Fig. 7), 
indicating that in the literature the value of CD for the 
fragments is probably overestimated. In reality, for 
the same shape of fragment, when moving through 
the air, the value of the coefficient CD will vary 
between CDmax and CDmin (conclusion supported by 
recent papers from NASA (Murman et al., 2005; 
Murman, 2010), depending on the fragment 
orientation and its velocity, but these CD values are 
likely to be considerably less than the values of CD 
(for fragments) given in the literature. 

The interesting thing is noted regarding CD(Ma) 
curves. Namely, the curves in Fig. 6 show that at 
certain orientations of the fragment (when it 
represents the relatively slender body, Fig. 4), the 
maximum value of the CD is shifted to larger Mach 
numbers. The maximum value of the drag coefficient 
CD (Table 1 and Fig. 6) is predominantly in the range 
of 1.2 M (for orientations: 0°, 15°, 30°, 45°, 105°, 
135°, 150°, 180°, 195°, 210°, 225°, 315° and 345°) to 
1.5 M (for 60°, 75°, 90°, 245° and 255°). At the 
fragment orientations of 120°, 165° and 300°, the 
maximum CD value was at 1.3 M. Interestingly, for 
the orientation of the fragment of 270°, the 
maximum CD value was at 3 Ma, and for 280°, this 
maximum was at 2 Ma. 

The reason for this shift of the maximum CD value 
for a fragment (irregularly shaped body) is difficult 
to estimate because in different orientations the 
fragment has a different shape of the front surface 
and different values of the exposed surface. By 
examining the available literature, this 
phenomenology (in the case of fragments of 
irregular shape) was not considered. 

Generally speaking, in order to obtain functional 
dependence between the position of the peak value 

od CD and some of the parameters (ie body shape, 
the shape of the reference area, etc.), only one 
variable should be considered and the others kept 
constant. 

In this regard, an analysis of the influence of the 
body's frontal surface (through the variation of 
prism apex half-angle - idealized geometric shape) 
on the position of peak values of curve CD(M) was 
performed, where the reference area of the body was 
the same (constant) for all cases. 

For this analysis, numerical simulations of air-
flow around the body have been made with different 
values of prism apex half-angle, while having the 
same reference area. Numerical simulations of 
aerodynamic flow were performed in Ansys Fluent. 

Fig. 8 is a schematic representation of a body with 
different frontal shape, with which numerical 
simulations have been performed. In the analysis 
prisms with the following apex half-angles were 
taken into consideration: 30°, 45°, 60° and 90°, as in 
Fig. 8). From Fig. 8 it can be seen that the shape and 
value of the reference area (rectangle shape) did not 
change in these bodies (dimensions of height b 
(50mm) and body width c (50mm) were constant for 
all shapes). 

 

 
Fig. 8: Schematic representation of body shape with which 

numerical simulations were performed (dimensions in 
mm) 

 
Optimized (reduced cell size around the body) 

unstructured mesh (1000 000 cells) and boundary 
conditions wall and pressure far-field (Fig. 9) were 
used in the numerical model. The flow velocity 
vector was directed in the positive direction of axis X 
of the coordinate system set in the body center of 
mass (Fig. 10). Enclosure mesh around body was a 
cube (Fig. 9) with 1m long side. 

 

  

Fig. 9: Enclosure mesh around prism body 
Fig. 10: Optimized unstructred mesh around prism (section 

view) 
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Air is modeled as homogeneous, isotropic, ideal 
gas with pressure-temperature dependent density, 
specific heat, thermal conductivity and dynamic 
viscosity. Simulations were carried out for a flow 
velocities of 0.9, 1, 1.1, 1.2, 1.3 and 1.5 Mach since 
peak values of CD are usually found in this interval.  

A density-based solver was used in the 
simulations, where mass, flow and energy equations 
were determined as the Navier-Stokes equation 
system. Spalart-Allmaras turbulence model was used 
in the simulations since it has proven to be effective 
for the boundary layers with high pressure 
gradients, and is effective for transonic flows (Pope, 
2000). Residual tolerance in numerial simulations 
was set to 10-5 (Fluent, 2010). 

Table 2 gives numerical simulation results for 
examined prism shapes (prisms with four different 
apex half-angles) showing Mach number at which 
the peak value of CD is obtained for individual cases 
(for each apex half-angles of prisms). 

The results from Table 2 show that the position of 
an extreme values of drag coefficient CD is at 
different Mach numbers for different body’s frontal 
surface (at the same time with the equal value of the 
reference area - area perpendicular to flow velocity 
vector), which means that the shape of the front 
surface of the body affects the position of the 
maximum value of CD (M). 

 
Table 2: Numerical simulation results for different body shapes (different prism apex half-angles) 

Mach number for peak value of CD 
CD values for different prism apex half-angles 

30 45 60 90 
0,9 1,0226 1,2888 1,4856 1,6614 
1 1,2474 1,4986 1,6472 1,8118 

1,1 1,2708 1,5210 1,6704 1,7986 
1,2 1,2671 1,5218 1,6697 1,7862 
1,3 1,2514 1,5200 1,6705 1,7829 
1,5 1,2006 1,4986 1,6488 1,7726 

 

Fig. 11 shows the drag coefficient CD(M) curve for 
the prism with different apex half-angles, for tested 
velocities.  

The diagram in Fig. 11, as expected, shows that 
the minimum values of the drag coefficient CD were 
obtained in the case of prism apex half-angle of 30, 
while for prism apex half-angle of 90° (which 
practically represents a parallelepiped body), the 
highest CD values for the full range of Mach numbers 
were obtained. 

 

 
Fig. 11: Curves CD(M) for prisms with difefrent values of 

apex half-angles 

 
These results can be presented differently, using 

the slenderness of a body. The body's slenderness 
can be defined (i.e., as for the axisymmetric 
projectiles) as the L/D ratio, where L is the 
dimension of the body in the direction of the velocity 
vector, and D is the equivalent diameter of a body 
(referring to axisymmetric bodies). The reference 
area was constant and of the same shape for tested 
bodies in the analysis. 

Dimension L is easily determined for the prism 
(Fig. 8) from the trigonometry, but since the cross-
section in this case is not a circle but rectangular, it is 

necessary to define a model to determine the value D 
for rectangular reference area. 

This can be done by first determining the polar 
moment of the inertia of the reference area S of the 
body with rectangular reference area about an axis 
of the velocity vector (x in this case). This axis passes 
through the center of mass of a body and is 
perpendicular to area S in Fig. 12. 

Once the polar moment of inertia values are 
known for this rectangular area, equating these 
values with the values of polar moment of inertia for 
the circular reference area, the value of the 
equivalent diameter Dekv can be found. Fig. 12 shows 
a schematic representation of the dimensions (c and 
b) of rectangular reference area S. 

 

 
Fig. 12: Schematic representation of the dimensions of 

rectangular reference area S 
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The polar moment of inertia of the rectangular 
area (i.e., area S, Fig. 12) is obtained using the 
expressions: 

 
𝐼0 = 𝐼𝑦 + 𝐼𝑧                    (26) 

𝐼0 =
𝑐𝑏3

12
+

𝑏𝑐3

12
                                      (27) 

 
where c is body dimension perpendicular to the 
velocity vector direction (dimension in the direction 
of axis y, Fig. 12), b - is body dimension 
perpendicular to the velocity vector direction 
(dimension in the direction of axis z, Fig. 12). The 
dimensions c and b did not change in this analysis, 
only the dimension L (length of a body) was varied 
by using different apex half-angle of the prism.  

The polar moment of inertia of the circular area is 
obtained using the expression: 
 

𝐼0 =
𝐷4𝜋

32
                                       (28) 

 

where D is the diameter of the cross-section 
(reference area) of the axisymmetric body. It is this 
parameter D that will be used as the equivalent 
diameter of the body with rectangular reference area 
- Dekv, by equating the expressions (10) and (11) and 
out of that equation extracting the Dekv parameter: 

 
𝑐𝑏3

12
+

𝑏𝑐3

12
=

𝐷𝑒𝑘𝑣
4 𝜋

32
                    (29) 

 
From (29) the equivalent diameter of the body 

with rectangular reference area Dekv is: 
 

𝐷𝑒𝑘𝑣
4 = √

8(𝑐𝑏3+𝑏𝑐3)

3𝜋

4

                    (30) 

 
Now the slenderness of a  body with rectangular 

reference area can be expressed in the general form 
as: 

 

𝜆 =
𝐿

𝐷𝑒𝑘𝑣
=

𝐿

√8(𝑐𝑏3+𝑏𝑐3)

3𝜋

4
                   (31) 

 
 

where L is a dimension of a body in direction of 
velocity vector. 

The data from Table 2 can now be presented as a 
function of body (prism with different apex half-
angles) slenderness. Table 3 gives the results of 
numerical simulations (Mach numbers for extreme 
values of CD) for prisms of different slenderness. 

 
Table 3: Results of numerical simulations (Mach numbers 

for extreme values of CD) for prisms of different 
slenderness 

Mach number for CDmax Slenderness Apex half-angle 

1 0,0876 90 
1,1 0,3405 30 
1,2 0,5256 45 
1,3 0,8463 60 

 

Table 3 shows that for the body slenderness 
0.3405 (apex half-angle 30) the extreme value of CD 
is at 1.1 Mach. For body slenderness 0.5256 (apex 

half-angle 45) the peak value of CD is at a speed of 
1.2 M. On the other hand, for a body slenderness 
0.8463 (apex half-angle 60), the extreme value of CD 
is at a speed of 1.3 Mach and for a slenderness 
0.0876 (apex half-angle 90°) the extreme value of CD 
is at a speed of 1 Mach. 

Diagram in Fig. 13 shows the results obtained by 
numerical simulations, as shown in Table 3. The 
diagram in Fig. 13 shows that in the case of a 
rectangular reference area such as in a prism, by 
increasing the body slenderness (at the same time 
altering the frontal shape of the body), the values of 
the Mach numbers at which the extreme values CD 
are obtained, increased to the larger Mach numbers. 
The data obtained for the prisms of different 
slenderness were approximated by the linear 
function y = 0.402x + 0.9691 (Fig. 13), where the 
correlation coefficient was satisfactory (R2 = 0,989). 

 

 
Fig. 13: Mach number for which the extreme value of CD 

appears, as a the function of prism slenderness 
 

These results point to the fact that frontal shape 
of body and its slenderness can impact the position 
od the extreme value of CD on curve CD(Ma).    

4.2. Aerodynamic lift coefficient 

The lift coefficient CL is a dimensionless 
coefficient that relates the lift generated by a lifting 
body to the fluid density around the body, the fluid 
velocity and an associated reference area. The choice 
of the reference area should be specified since it is 
arbitrary. 

The lift coefficient CL was also determined for 
fragment (irregularly shaped body) in different 
orientations (Fig. 4), depending on the angle of 
orientation(0- 360).  

Based on the results of the numerical simulations 
and the expression 25, in Table 4 are the values of 
drag coefficient CL for the 3D model of real fragment 
for different orientation of the fragment. 
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Fig. 14 shows the curves of drag coefficient CL for 

fragment as a function of the Mach number for the 

different orientation of the fragment (0-360), 
obtained from the results of numerical simulations. 

The curves in Fig. 14 show that the same 
fragment may, in different orientations, have 
significantly different values of the lift coefficient. In 
order to interpret the results, CL data that were 
available in literature (for certain body shapes) are 
compared with the results obtained in numerical 
simulations. 

Baker et al. (2012) in the Manual of Explosion 
Hazards and Evaluation (Baker et al., 2012) lists data 
for the thin plate lift coefficient at different attack 
angles (different orientation of plate). The lift 
coefficient CL as a function of plate orientation 
(attack angle), as indicated by Baker et al. (2012) is 
given in Fig. 15. The author does not state which 
flow velocity refers to this curve, but it is assumed 
that the data relate to supersonic velocities as the 
author describes the bodies formed by explosion. 

Fig. 15 shows that for a zero attack angle, the lift 
force in symmetrical bodies is practically equal to 
zero. The lift force is approximately linearly 
proportional to the attack angle, and at higher angles 
of attack, the lift coefficient reaches its maximum at a 
certain angle (the so-called critical angle of attack), 
after which there is a significant separation of the 
flow from the upper surface of the body so the lift 
force decreases (and the drag force increases). For 
aero profiles (in aviation), for example, in this case, it 
says that there was a stall. After the critical attack 
angle, the lift coefficient CL decreases (Fig. 15) and 
reaches the zero value for the 90° attack angle (in 
this position, the body is also symmetrical, relative to 
the flow velocity vector).  

Twisdale and Vickery (1992) investigated models 
for predicting trajectories of primary and secondary 
fragments (fragments of walls, concrete, steel 
elements, pieces of soil, as well as fragments of 
missiles) during the explosion. In their paper they 
present the basics of several previously developed 
models (2D model without drag force; 2D model 
with drag force; 3D model with drag force; model 
with drag force, lift force and lateral force) for 
estimating the drag, lift and lateral force coefficients 
(for the body with the parallelepiped shape).  

They used analytical models (the so-called Cross 
Flow theory - attempt to estimate the aerodynamic 
lift and lateral force coefficient as a function of the 
attack angle only on the basis of the known values of 
the body drag coefficient in three different 
directions. In the research, diagrams were presented 
(Fig. 16) on which they compared the results for the 
lift coefficient obtained analyticaly (Cross Flow 
theory), with experimental data for a paralelepiped 
body. 

In Fig. 16, lift coefficient CL is given as a function 
of the atack angle α (parallelepipedal body in 
different orientation) for different roll angles δ (0 °, 
30 °, 60 ° and 90 °) (Twisdale and Vickery, 1992). 

The obtained numerical simulations results for 
lift coefficient CL (Fig. 14) can be presented 
differently in order to qualitatively compare them 
with the diagrams in Figs. 15-16. 
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Fig. 14: The range of values of the drag coefficient CL for the 3D model of the fragment obtained by the simulations 

 

 
Fig. 15: The lift coefficient CL as a as a function of plate 

orientation (Baker et al., 2012) 

 

 
Fig. 16: Lift coefficient CL as a function of the atack angle α 

for different roll angles δ (Twisdale and Vickery, 1992) 

 
So in Fig. 17, the curves of the lift coefficient CL 

are given as a function of the fragment atack angle 
(orientation of a body in our case)  - namely, two sets 
of data: for body orientations 0-90 and 90-180 
(Fig. 4), for different Ma numbers (0.6-4 M). 

By comparing the diagrams in Fig. 17 with the 
diagrams in Figs. 15-16, we can see that the curves of 
lift coefficients, obtained by numerical simulations 
(Fig. 17) have a similar trend as the lift coefficients 
curves in Figs. 15-16 (Baker et al., 2012; Twisdale 
and Vickery, 1992). 

Based on the results of numerical simulations, for 
the orientations 0, 90, and 180, the obtained 
coefficient CL value is close to zero (not zero because 
the fragment is not a symmetrical body), similarly as 
in Figs. 15 and 16. Also, the maximum value of the 

coefficient CL is similar because in numerical 
simulations, the maximum CL is obtained for 
orientation between 40 and 55, while for example 
in Baker's case (Baker et al., 2012) this maximum CL 
is at atack angle of 40 for a flat flat plate, and in 
Twisdale's case (Twisdale and Vickery, 1992) it is 
between 40 and 60. Anderson (Anderson, 2016) 
states that this angle may be 55° in the case of 
hypersonic flow. 

What is interesting in Fig. 17 is that the obtained 
diagrams have a certain symmetry (of course, not 
complete symmetry because the body is not 
symmetrical), i.e. the curve CL (Ma) from the upper 
set of results (orientation of the fragment: 0° - 90°) 
are quite similar the curve CL (Ma) from the lower 
set of results (the orientation of the fragment: 90°-
180°), only in the second case we have negative 
values of CL. 

If we go back to Fig. 4 we can see the reason for 
this. Namely, if, for example, we compare the 
orientation of the fragment of 60 ° and 120 °, it can 
be seen that these orientations of the fragment are 
symmetrical in relation to the velocity vector 
direction (Fig. 4). This also applies to the 
orientations of the 15° and 165°, 30° and 150°, 45° 
and 135°, 75° and 105°, respectively. Thus, for these 
orientations, the CL values for fragment are similar 
but with different sign, so and CL(Ma) curves 
represent a kind of symmetry relative to the 
direction of airflow vector (Fig. 17). 

Presented values of coefficients CD and CL for 
irregularly shaped bodies (such as fragments of HE 
projectiles), obtained in this paper, can be used 
when predicting trajectories of such bodies. 

5. Conclusion 

Using the analytical models, CAD methods and 
numerical simulation methods presented in the 
paper, the values of aerodynamic forces and 
moments that act on a high-velocity (HE projectile) 
fragment were determined. Based on the results, and 
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by knowing the value of the exposed fragment area 
for each fragment orientation, an aerodynamic drag 
coefficient CD and aerodynamic lift coefficient CL for 

the given body were determined for different 
orientations of body and at different velocities. 

 

 
Fig. 17: The range of values of the drag coefficient CL for the 3D model of the fragment obtained by the simulations 

 
It was found that the same body (in this case a 

fragment of HE projectile) can have a whole range of 
CD and CL values. This fact is often neglected in the 
literature, and instead, some average value of these 
coefficients is taken into account usually. In reality, 
for the same shape of the fragment, during the 
motion through the atmosphere, the value of the 
coefficient CD will vary between CDmax and CDmin, 
depending on the fragment orientation and its 
velocity. Also, lift coefficient CD will also vary, which 
can lead to an unpredictable vertical motion of such 
a body. 

In this paper, the minimum values of CD, obtained 
by numerical simulations, are found to be less than 
the minimal value of the CD obtained experimentally. 
The difference may be the result of a different way of 
defining the exposed area of the fragment. 

Evaluation of the effect of the front surface shape 
of a body and slenderness of a body on the position 
of a maximum CD value (on CD (Ma) curve) was 
performed. It has been found (for an idealized 
geometric shape - prism) that the shape of the front 
surface of the body can affect the position of the 
maximum CD value on the curve CD (Ma). Similar 

results were obtained for fragment with an irregular 
shape. 
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